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Motivation
Sources of polyhedral meshes:

meshing of complex geometries

adaptive mesh refinement methods

multi-block meshes (non-matching, hybrid)

mesh reconnection methods

moving mesh methods
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Motivation
“... The tests carried out so far indicate that our
polyhedral meshes lead to superior convergence
rates and accuracy relative to tetrahedral meshes
and comparable to those of high-quality hexahedral
meshes (where both can be generated).”

[CD adapco Group]
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Mimetic finite difference method

��� � � ���� 	 
��� 
��� ��� � � 
� � � � � ���� 	 
 �� ��� � � �� � 	 
 � � ��� � �

�  � � !"   #$ % �  � &   #$ % � � !� ��� � � � ! � � ��� � �

–



Mimetic finite difference method
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Four-step methodology:

1. Define degrees of freedom for "  (' )  and
�  *' +  

2. Discretize the mass balance equation,
#$ %, +  - )  

3. Equip discrete spaces with scalar products

.0/ / 132 and

./ / 154

4. Derive the discrete flux operator,

! , )  - +  , from Green’s formula
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Mimetic finite difference method
Step 1. Define degrees of freedom for "  ' )  and

�  ' +  

"  

is constant on each polyhedron,


� 6 � )  � � 7�8 9�8 :8 � � �

;=< >?A@ is the degree of freedom associated with element

B

define the interpolated function < C=D E > as follows:
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Mimetic finite difference method
Step 1. Define degrees of freedom for "  ' )  and

�  ' +  

�  

is constant on each face,


� 6 � +  � � 7 LNM �8 �

;O >?AP is the normal velocity component associated with face

Q

define the interpolated function

O C D R > as follows:

; O CS?P F G HQ HP TVUXW TVYK J
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Mimetic finite difference method
Steps 2. Discretize the mass balance equation,

#$ %, +  - )  
Gauss’ theorem:


� � �Z� � �� 6[\ [^] _
`ab ac \
�� / �� d�e

The definition of

�  

gives

f #$ % �  g \ � `ab ahi c \
� �  � h aL a
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Mimetic finite difference method
Step 3. Equip discrete spaces with scalar products

.0/ / 12 and
.0/ / 154

."   j  12 � \ i k�l
�"  �5\ � j  �5\ ab a

. �   m  154 � \ i k�l
. �   m  1 \

where

. �   m  1 \ �
n�o

prqsut v
w\ q prqs � �  � h�x � m  � h�y

and

w\ is an SPD matrix.
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Mimetic finite difference method
Steps 4. Derive the discrete flux operator,

! , )  - +  , from Green’s
formula

The continuous operators


� � and
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We enforce that the discrete operators

#$ %

and

!

satisfy

. �   ! "  154 � � ."   #$ % �  12 }"  ' )  } �  ' +  |

–



Mimetic finite difference method
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Problem assumptions

Regularity and ellipticity of .

Every component of is in

`~ � �
and is

strongly elliptic:

�r� ��� � � � � ��� � � �� ��� � �

for all � � �

and � � .

Assumptions on the domain .

is a polyhedron with a Lipschitz continuous
boundary.
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Mesh assumptions

Number of faces and edges.

Every element has at most L faces, and each
face has at most 8 edges.

Volumes, areas, and lengths.�

three positive constants �� , �� and

�� such that

�� � � b � �� �� � � b � �� �� � b ��� �

where

� b is the diameter of .
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Mesh assumptions
Star-shaped faces.

Mesh faces are flat.�

a positive constant �� s.t. each face of
element is star-shaped w.r.t. every point of the
disk L of radius �� � b .

.
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Mesh assumptions

The pyramid property.

For every face of element ,

�
a pyramid

Lb s.t.Lb is contained in

its base is equal to

its height is equal to �� � b

its vertex is projected to the center of disk L

height 

disk D

base f

f
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Mesh assumptions

Star-shaped elements.�

a positive number �� s.t. every element is
star-shaped w.r.t. every point of a sphere of radius�� � b .
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Mesh assumptions

The assumptions forbid:
anisotropic (stretched) elements
stretched faces
small 2D angles

The assumptions allow:
regular meshes
degenerate elements
non-convex elements
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Scalar product assumptions

Stability of

��� � � � b .�

two positive constants � � and

��
s.t., for every� � � and for every element , one has

� � � �
L' � b

� � � � L � �� � � b �� � �
L' � b

� � � � L��
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Scalar product assumptions

Stability of

��� � � � b .�

two positive constants � � and

��
s.t., for every� � � and for every element , one has

� � � �
L' � b

� � � � L � �� � � b �� � �
L' � b

� � � � L��

convergence proofs based on relationships with MFE methods and
Strang’s first lemma can NOT be used.
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Scalar product assumptions

Consistency of

� � � � � b .
For every element , every linear function � ` and
every

� � �, we have

� � � ` �  � � � b ¡
� b

� ` �£¢ ¤�¥
b

� ` � � � b ¢ ¤
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Scalar product assumptions

Consistency of

� � � � � b .
For every element , every linear function � ` and
every

� � �, we have

� � � ` �  � � � b ¡
� b

� ` �£¢ ¤�¥
b

� ` � � � b ¢ ¤

for divergence-free functions, we get
. � �¦ § v � ¨ m  1 \ �

c \
§ v m  
 e|
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Scalar product assumptions

Consistency of

� � � � � b .
For every element , every linear function � ` and
every

� � �, we have

� � � ` �  � � � b ¡
� b

� ` �£¢ ¤�¥
b

� ` � � � b ¢ ¤

for § v � `

, we get the definition of

#$ %

:
f #$ % m  g \ � ` ab ahi c \
� m  � h aL a
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Scalar product assumptions

Consistency of

� � � � � b .
For every element , every linear function � ` and
every

� � �, we have

� � � ` �  � � � b ¡
� b

� ` �£¢ ¤�¥
b

� ` � � � b ¢ ¤

we are left with 3 possible choice for § v :
§ v � e § v � © § v � ª|

we get a linear system for the coefficients of

w\ (NO lifting operator)
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Main results
stability analysis
estimate for the vector variable
1st estimate for the scalar variable
link to methods using lifting operators
2nd estimate for the scalar variable
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Main results
Stability analysis.

Define mesh norms:

� � � � � � � � ) « ¡ � �� � � )� � � � � � � � � + « ¡ � �� � � +

and

� � � � � � � � d¬® « ¡ � � � � � � � � +
b' ¯  

� � b � � � �°²± � b � �
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Main results
Stability analysis (cont.)

For every ³ � � �, there exists
� � � s.t.

� �� ³ � � ) � � � � � � � � d¬® � � � ³ � � � � )

where � is a constant independent of ³ �

,

�

and �.
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Main results
Estimate for the vector variables.

Theorem. Let

��´ � µ �

be the continuous solution,� �� � �

be the discrete solution and

 
be the

interpolant of

µ

. Then

� � �   ¥ � � � � + � � � ´ �·¶ ± � ¯ ��

where � ¡ ¸ ¹ºb' ¯  
� b �
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Main results
1st estimate for the scalar variables.

Theorem. Let

��´ � µ �

be the continuous solution,� �� � �

be the discrete solution and

 
be the

interpolant of ´ . For convex domain , we get

� � �   ¥ � � � � ) � � » � ´ ��¶ ± � ¯ � �¼ ��¶ v � ¯ � ½

where

¼

is the source term.
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Main results
Link to methods using lifting operators.

Consider a lifting operator b with the properties:
preserves normal components:

¾\ � m  � / �� � � m  � h } L' � b

preserves constant divergence:


� � f ¾\ � m  � g � f #$ % m  g \

exact for constant vectors

�À¿ _ : ¾\ � m ¨_ � � �¿ _

Then

� �� � � b « ¡ b
� ` b � � � � b � � � ¢ ¤

satisfies the scalar product assumptions.
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Main results
2nd estimate for the scalar variables.

Theorem Let

��´ � µ �

be the continuous solution,� �� � �

be the discrete solution and

 
be the

interpolant of ´ . Let be convex domain and the
lifting operator b satisfy

� b �   � ¥ µ � °± � b � � ¾M � b � µ � �¶ v � b � � Á

for all

µ

. Then

� � �   ¥ � � � � ) � � � » � ´ �·¶ ± � ¯ � � ¼ �¶ v � ¯ � ½ �
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Numerical methods for computing

For every linear function � ` and every

� � �, we have

� � � ` �  � � � b ¡ � b � ` �X¢ ¤¥ b � ` � � � b ¢ ¤�

It results in 3 sets of equations with unknown matrix b :

b Â ¬ ¡ ÃÄ¬ � Å ¡ Æ� Ç� È�

where

Â ` ¡ � ¤ �  � Â � ¡ � É �  � Â � ¡ � Ê �  �
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Numerical methods for computing

matrix b has

Ë � Ë Æ �Ì Ç

unknown entries:

ÍÎÍÏÍÐÍÎÍ
: v v : v± : v Á : v Ñ

: v± :± ± :± Á :± Ñ

: v Á :± Á : Á Á : Á Ñ

: v Ñ :± Ñ : Á Ñ : Ñ Ñ
ÒÎÒÏÒÐÒÎÒ for

Ó � Ô � �8 �ÖÕ M �8 dÕ �� �

3 equations, b Â ¬ ¡ Ã ¬ , give a linear system
× ¡

it has at most
È Ë ¥ È

linear independent equations
it is always compatible
the solution vector m is not unique
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Numerical methods for computing

We search for a solution maximizing 2-norm of
diagonal elements:

× ¡ ¹Ø Ù ¸ ¹º:
Ó

¬ � `
× �¬ ¬

and minimizing 2-norm of off-diagonal elements.

The it trick is to modify the original equations:

b Â ¬ ¡ ��Ú b Û ¥ b � Â ¬ ¡ Ú b Â ¬ ¥ Ãu¬

and to use the LAPACK routine giving a minimal
norm solution.
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Numerical methods for computing
Let � � e © � � e Á ©± Ü e ÝÞß � e © �ß ��à � e �

, á\ � â ab a

and

� � e © � � � e Ü ` �± Ü ©± � e ©

� e © � e Ü ` �± |

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 9 a a a" ¨ � "  a a a2 a a a � ¨ � �  a a a4

1 7.79e-1 2.00e-0

2 1.38e-1 9.73e-1

3 2.96e-2 4.01e-1

4 7.00e-3 1.46e-1

5 1.72e-3 5.32e-2

rate 2.19 1.32
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Extensions of the methodology

Straightforward extensions:

� �

-curved faces (almost flat faces)

problems with a lack of elliptic regularity

Possible extensions:

other PDEs (Maxwell, linear elasticity)

essentially curved faces
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Conclusion
We developed a new methodology for the design and
the analysis of the MFD method.

We proved stability of the discretization.

We proved optimal convergence estimates.

We analyzed numerically a new algorithm for
computing b .
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